link
由于题中涉及“区间”操作等字样,容易想到线段树解法。
考虑如何 pushup 和 pushdown。

一种正常的方法

按照题意模拟,设懒标记 tag 表示数组反转时给这个节点带来的影响。这里仅提供关键函数的代码。

void pushdown(int p) {
    if (tr[p].tag) {
        tr[p << 1].tag ^= 1; // 按照题意取反
        tr[p << 1 | 1].tag ^= 1;
        tr[p].tag = 0;
    }
}

void update(int p, int l, int r) {
    if (tr[p].l >= l && tr[p].r <= r) return tr[p].tag ^= 1, void();
    pushdown(p);
    int mid = tr[p].l + tr[p].r >> 1;
    if (l <= mid) update(p << 1, l, r);
    if (r > mid) update(p << 1 | 1, l, r);
}

int ask(int p, int x) {
    if (tr[p].l == tr[p].r) return tr[p].tag ? tr[p].val ^= 1, tr[p].tag = 0, tr[p].val : tr[p].val;
    pushdown(p);
    int mid = tr[p].l + tr[p].r >> 1;
    if (x <= mid) return ask(p << 1, x); else return ask(p << 1 | 1, x);
}

另外一种方法

让我们来模拟一组数据

4 3
1 1 4
1 1 3
1 2 4
操作 模拟
1 1 4 将数列中 1~4 的数字全部取反 此时数列变为:1 1 1 1
1 1 3 将数列中 1~3 的数字全部取反 此时数列变为:0 0 0 1
1 2 4 将数列中 2~4 的数字全部取反 此时数列变为:0 1 1 0

此时如果将“取反”操作改为“+1”,则有:

操作 模拟
1 1 4 将数列中 1~4 的数字全部取反+1 此时数列变为:1 1 1 1
1 1 3 将数列中 1~3 的数字全部取反+1 此时数列变为:2 2 2 1
1 2 4 将数列中 2~4 的数字全部取反+1 此时数列变为:2 3 3 2

若我们将每一次“+1”操作后的数列对 2 取模,观察结果

操作 取反 “+1” “+1”取模
1 1 4 1 1 1 1 1 1 1 1 1 1 1 1
1 1 3 0 0 0 1 2 2 2 1 0 0 0 1
1 2 4 0 1 1 0 2 2 2 1 0 1 1 0

我们可以惊奇地发现,取模后的结果与对原数列取反的结果相同。

证明:
若有一个数 a=1a = 1,其取反的结果为 0,即 aa xorxor 1=0=(a+1)%21 = 0 = (a + 1) \% 2
设有数列 a1,a2,a3,...,ana_1, a_2, a_3, ..., a_n
若对数列中al,...,ara_l, ..., a_r 取反:
则变成 a1,a2,...,(al+1)%2,(al+1+1)%2,...,(ar+1)%2,...,ana_1, a_2, ..., (a_{l}+1)\%2, (a_{l+1}+1)\%2, ..., (a_r+1)\%2, ..., a_n
正确性显然

#include <bits/stdc++.h>
using namespace std;

#define debug(args...) fprintf(stderr, ##args)

using ll = long long;
const int N = 1e5 + 7;

struct segtree {
    struct node {
        int l, r;
        int sum, add;
    } tr[N << 2];
    void pushup(int p) { tr[p].sum = tr[p << 1].sum + tr[p << 1 | 1].sum; }
    void pushdown(int p) {
        tr[p << 1].sum += tr[p].add * (tr[p << 1].r - tr[p << 1].l + 1);
        tr[p << 1 | 1].sum += tr[p].add * (tr[p << 1 | 1].r - tr[p << 1 | 1].l + 1);
        tr[p << 1].add += tr[p].add;
        tr[p << 1 | 1].add += tr[p].add;
        tr[p].add = 0;
    }
    
    void build(int p, int l, int r) {
        tr[p].l = l, tr[p].r = r;
        if (l == r) return tr[p].sum = 0, void();
        int mid = l + r >> 1;
        build(p << 1, l, mid);
        build(p << 1 | 1, mid + 1, r);
        pushup(p);
    }
    
    void update(int p, int l, int r) {
        if (tr[p].l >= l && tr[p].r <= r) return tr[p].add += 1, tr[p].sum += tr[p].r - tr[p].l + 1, void();
        pushdown(p);
        int mid = tr[p].l + tr[p].r >> 1;
        if (l <= mid) update(p << 1, l, r);
        if (r > mid) update(p << 1 | 1, l, r);
        pushup(p);
    }
    
    int query(int p, int l, int r) {
        if (tr[p].l >= l && tr[p].r <= r) return tr[p].sum % 2;
        pushdown(p);
        int mid = tr[p].l + tr[p].r >> 1, ans = 0;
        if (l <= mid) return ans += query(p << 1, l, r);
        if (r > mid) return ans += query(p << 1 | 1, l, r);
        return ans;
    }
} st;
int n, m;

int main() {
    scanf("%d %d", &n, &m);
    st.build(1, 1, n);
    for (int i = 1, x, y, z; i <= m; ++i) {
        scanf("%d", &x);
        if (x == 1) scanf("%d %d", &y, &z); else scanf("%d", &y);
        if (x == 1) st.update(1, y, z);
        if (x == 2) printf("%d\n", st.query(1, y, y));
    }
    
    return 0;
}

听说这题在当年是道紫题

3x经验:P2574 | P3870 | SP7259
听说三道题交一样的代码能过
code

#include <bits/stdc++.h>
using namespace std;


//    0. Enough array size? Enough array size? Enough array size? Integer overflow?

//    1. Think TWICE, Code ONCE!
//    Are there any counterexamples to your algo?

//    2. Be careful about the BOUNDARIES!
//    N=1? P=1? Something about 0?

//    3. Do not make STUPID MISTAKES!
//    Time complexity? Memory usage? Precision error?


#define debug(args...) fprintf(stderr, ##args)
#define gc getchar
using ll = long long;

const int inf = 1 << 31 - 1;
const int N = 3e5 + 7;

int n, m;
struct segtree {
    struct node {
        int l, r;
        int sum, add;
    } tr[N << 2];
    void pushup(int p) { tr[p].sum = tr[p << 1].sum + tr[p << 1 | 1].sum; }
    void pushdown(int p, int x) {
        if (tr[p].add) {
            tr[p << 1].add ^= 1;
            tr[p << 1 | 1].add ^= 1;
            int mid = x >> 1;
            tr[p << 1].sum = (x - mid) - tr[p << 1].sum;
            tr[p << 1 | 1].sum = mid - tr[p << 1 | 1].sum;
            tr[p].add = 0; 
        }
    }
    void build(int p, int l, int r) {
        tr[p].l = l, tr[p].r = r;
        if (l == r) return tr[p].sum = 0, void();
        int mid = l + r >> 1;
        build(p << 1, l, mid);
        build(p << 1 | 1, mid + 1, r);
        pushup(p);
    }
    void update(int p, int l, int r) {
        pushdown(p, tr[p].r - tr[p].l + 1);
        if (tr[p].l >= l && tr[p].r <= r) return tr[p].add ^= 1, tr[p].sum = tr[p].r - tr[p].l + 1 - tr[p].sum, void();
        int mid = tr[p].l + tr[p].r >> 1;
        if (l <= mid) update(p << 1, l, r);
        if (r > mid) update(p << 1 | 1, l, r);
        pushup(p);
    }
    int ask(int p, int l, int r) {
        if (tr[p].l >= l && tr[p].r <= r) return tr[p].sum;
        pushdown(p, tr[p].r - tr[p].l + 1);
        int mid = tr[p].l + tr[p].r >> 1, ans = 0;
        if (l <= mid) ans += ask(p << 1, l, r);
        if (r > mid) ans += ask(p << 1 | 1, l, r);
        return ans;
    }
} st;

int main() {
    scanf("%d %d", &n, &m);
    st.build(1, 1, n);
    for (int i = 1, op, l, r; i <= m; ++i) {
        scanf("%d %d %d", &op, &l, &r);
        if (op == 0) st.update(1, l, r); else printf("%d\n", st.ask(1, l, r));
    }
    return 0;
}